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Abstract 

We present a logarithmic algorithm for performing parallel refinement of triangular 
meshes by the widely used longest edge bisection procedure. We show that the 
refinement propagation forms a data dependency which can be expressed as a forest of 
directed trees. We solve a parallel Euler Tour problem on the trees to propagate the 
refinement. After propagation, we apply refinement templates. Our algorithm improves 
earlier reported results which had linear worst case complexity. 
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1    Introduction 
Recently, adaptive mesh refinement (AMR) techniques for the solution of partial differential 
equations have gained importance due to their ability to concentrate computational as well 
as storage resources to regions where they are most needed, i.e. regions where the error in 
the computed solution is not within a prescribed tolerance. AMR methods are driven by 
automatic estimation and control of discretization errors and therefore need procedures to 
refine regions with high errors. Since the mesh needs to be refined selectively, specialized 
data structures and algorithms must be devised to refine and maintain the nonuniform 
mesh. 

In this paper, we address the problem of parallelizing adaptive refinement of two- 
dimensional triangular meshes. A variety of techniques have been proposed to refine such 
meshes sequentially [2] [3] [10] [11]. The following three properties are highly desirable in a 
refined mesh: (i) the resultant mesh should be conforming, i.e., the intersection of any two 
triangles should be either a single vertex, or an edge joining two vertices or the empty set, 
(ii) the mesh gradation should be smooth, i.e., the areas of neighboring triangles should 
not differ drastically, and finally (Hi) the angles in the mesh should be neither too small 
nor too large [1][5]. 

Rivara's refinement algorithm [10] which is based on bisecting the triangles by their 
longest edge satisfies properties (i) and (ii). In relation to property (m), it is proved that 
the smallest angle in the (succesively) refined mesh is bounded by at worst one-half the 
smallest angle in the original mesh. 

Parallelization of mesh refinement procedures based on longest edge bisection have 
been considered in [4] [7] [14] [16]. The refinement procedures implemented by Jones and 
Plassmann [7] use randomized graph coloring heuristics to resolve data structure update 
conflicts. The data structures used in [4] and [14] do not necessitate the use of any 
graph coloring heuristic to implement parallel mesh refinement. All these implementations, 
however, have a worst case linear complexity due to possible propagation of refinement 
to all other triangles in the mesh. A worst case example has been given by Jones and 
Plassmann [7] and is shown in Figure 1. 

FIG. 1. Example given by Jones and Plassmann showing linear worst case propagation of 
refinement. 

In this paper, we present a logarithmic data parallel algorithm to refine triangular 
meshes by Rivara's longest edge bisection procedure. We first present the problem 
statement and then describe the algorithm. We also present an example illustrating the 
steps of our algorithm and suggest data structures for possible practical implementation. 



2    Problem Specification 
Let T(V, E, F) denote a two-dimensional triangular mesh with V representing the set of 
vertices, 

V = {(Xi,yi) : xi,yi € 3?}, 

E, the set of edges, 
E = {(vi,Vj) : Vi,Vj € V}, 

and F, the set of triangular faces, 

F = {(ej, e,-, ejfc) : e*, ej,ek € .E}. 

We define the lengthfe) of an edge, e* G £, as its euclidean length and use the index i 
to break the ties when multiple edges have same the euclidean length. 

In this paper, we assume that the input data supplied by the user specifies V, E and 
F. Some mesh generators may output the set of faces and express each face as a 3-tuple of 
vertices. In the discussion and conclusion section, we suggest a possible way of converting 
such a data set to the one assumed in this paper. 

Rivara presents two algorithms for refining the mesh by longest edge bisection. These 
are illustrated in Figure 2. In the first algorithm, a triangle marked for refinement (either 
initially or as a result of satisfying the conformity requirement) is always divided into two 
by bisecting it by the longest edge. In the second algorithm, the triangle is first bisected 
by the longest edge into two and if the non-conformity still persists, one or both of the two 
refined triangles are further subdivided to maintain conformity. 

(a) (b) 

FlG. 2.   Illustration of Rivara's two algorithms to refine by longest edge bisection 

Rivara's second algorithm is simpler and more practical. It also has the same angle 
bound as the first one. Therefore, it is the choice of several implementations including that 
of Jones and Plassman. In this paper, the parallelization technique we present in the next 
section applies to this second algorithm. Given a triangle with one, two, or all of the edges 
marked for refinement, Figure 3 shows the four possible templates that are used to refine 
the triangle in the second algorithm. 

3    Algorithm Description 
Unlike the previous algorithms which apply the refinement templates and propagate 
refinement simultaneously, our approach first propagates the edge-markings to satisfy 
conformity and then applies the templates at the end. Application of the templates can be 
parallelized easily once appropriate edges have been marked for refinement. The issue that 
remains is how to parallelize the propagation step in an efficient way. 

The following theorem constructs the directed data dependency graph of refinement 
propagation by treating each mesh edge as a vertex and drawing a directed edge from one 



FIG. 3.   Rivara refinement templates 

vertex to the other if the refinement of the former induces the refinement of the latter. 
The theorem proves an important property of the graph constructed in this way. 

THEOREM 3.1. Let Gr(Vr,Er) be a directed graph constructed from a triangular mesh 
T(V,E,F) with the vertex set, 

VT = {ej : ej € E and e* is the longest edge of at least one triangle in F}, 

and the directed edge set, 

Er = {< Vi,Vj > : Vi,Vj £ VT and length(vi) < lengthfvj)}; 

then the graph Gr forms a forest of directed trees. 
Proof. There are two observations. The lengths of mesh edges increase strictly as we 

follow a directed path. Therefore, there can be no cyles in Gr and hence GT forms a directed 
acyclic graph (DAG). Secondly, a vertex v\ E Vr can have at most one outward directed 
edge. The only way a vertex could have more than one outward directed edge is if it was not 
the longest edge of any triangle ; but these types of edges are not included in the definition 
of Vr. Therefore, we have a DAG, with vertices having at most one outward edge. This 
type of graph forms a forest of directed trees. D 

Our algorithm which parallelizes the refinement process basically constructs Euler Tours 
of directed trees and does a computation similar to computing the number of descendants 
of a tree node by the pointer jumping technique [6, p. 118]. We assign a weight of 1 to 
each edge < v,parent(v) >, v S Vr, in the Euler Tour if node v has been initially marked 
for refinement. All the other edges in the Euler Tour get a weight of 0. We compute prefix 
sums of these weights. Treating the root of the tree as a special case, we take the difference 
between the prefix sums of < parent(v),v > and < v,parent(v) > to get the number of 
marked descendants. If a node has positive number of marked descendants or the node itself 
has been initially marked for refinement, that node (i.e. the corresponding mesh edge) will 
be refined. 

If the number of triangles is n, then the numbers of edges and nodes are also 0(n). Let 
us assume a concurrent read, exclusive read model of PRAM. We will use 0(n) number of 
processors. The following theorem establishes the complexity of the algorithm assuming 
this model. 



Algorithm ParallelRefine 
begin 

1. Construct forest of directed trees, GT 

2. Construct Euler Tour of each tree in GT 

3. Assign weights to each edge of GT- 
4. Perform prefix summation of the weights on the edges from the beginning of each 

linked list by pointer jumping. 
5. Compute the number of marked descendants of each node. 
6. Refine an edge corresponding to a tree node if it is initially marked or it 

has positive number of marked descendants. 
7. Apply the appropriate refinement template to each triangle, 

end 

FIG. 4.   Steps of parallel refinement algorithm 

THEOREM 3.2. Algorithm ParallelRef ine has logarithmic worst case complexity. 
Proof. Step 1 of the algorithm takes 0(1) time since it involves assigning a processor 

to each triangle and having it compare the lengths of its edges. The degree of each node 
in graph GT is at most 4. Therefore, step 2 can be done in 0(1) as follows: The directed 
edges in the graph GT act as backward edges, < v,parent(v) >, in the Euler Tour. The 
backward edges and the forward edges, < parent{v),v >, can be assigned to one of the 
four locations associated with a node using exclusive writes. To do this, note that we can 
order the vertices of each triangle in such a way that we have a consistent (for example, 
clockwise) traversal. If we let (zi,j/i), (a^.i/a) and (x3,y3) denote the vertices of a triangle, 
the ordering can be done by arranging vertices in triangles such that the determinant 
formula, {x2yz - x3y2) - (xlV3 - x3yi) + (sij/2 - x2yi) has a consistent sign. Given an edge 
d = (uicpUiJ, we can have at most two triangles sharing this edge. From the consistent 
ordering, we can then state that the difference in the indices, will be positive for one triangle 
(e.g. to -*i > 0) and negative for the other triangle (e.g. h -*0 < 0). Furthermore, we can 
classify edges within a single triangle according to the order they appear (taking the longest 
edge as a frame of reference). In this way, we can get a unique location in the range 0,..., 3 
for each edge and hence make the assignment by exclusive writes. Weight assignment in 
step 3 takes 0(1). The prefix summation by pointer jumping at step 4 takes O(logn) time. 
Step 5 takes 0(1) time to compute the differences in prefix summation. Finally steps 6 and 
7 take 0(1) time since it involves each processor assigned to a triangle check locally for the 
appropriate template to use and to apply the refinement using this template. The overall 
parallel refinement algorithm has logarithmic worst case complexity. D 

The next section gives an example mesh and shows examples of linearized tree 
constructions on this mesh. 

4    Example and Tree Representations 
We illustrate the steps of our parallel refinement algorithm on the example mesh given in 
Figure 4. Figure 4(a) shows the original mesh with labels on the edges which act as the 
longest edge of at least one triangle. It also shows the shaded face /i as being initially 
marked for refinement. Since edge 3 is the longest edge of face fx. it has a weight of 1 and 
is drawn with a dark circle to indicate this weight. The rest of the labelled edges are not 



part of any face which have been marked for refinement. Therefore, they all have weight 0 
and are drawn with a white circle to indicate this weight. Additionally, Figure 4(a) shows 
the forest of directed trees that represent the dependency of refinement propagation for the 
mesh. As is illustrated in Figure 4(b), the refinement of edge 3 will propagate to edges 4, 
5 and 6. Once these four edges are marked for refinement, application of the refinement 
templates given in Figure 2 will lead to the final refined and conforming mesh given in 
Figure 4(c). 

rv °~ 
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FIG. 5. An example showing the construction of directed trees (a), the propagation of refinement 

(b) and the final refined mesh (c) 

Given the example mesh and the corresponding forest of directed trees, we illustrate the 
Euler-Tour representation of one of the trees (the one containing the nodes 3, 4, 5 and 6) 
in Figure 6(a). Euler Tour representation replaces each edge of the tree with two directed 
edges. In distributed memory implementations, this may lead to some complications due 
to variable number of links pointing to or from a tree node. A more practical preorder 
tree traversal representation involve replacement of each tree node, u€Vr, with two nodes, 
u0 and u\. This representation has been used by [15] and recently by [8]. Figure 6(b) 
illustrates the example tree in this representation. 
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FIG. 6.   Linearized representation for one of the trees in the example: Euler Tour representation 
(a) and another more practical representation (h) 

Given the representation in Figure 6(b), we assign the following weights; w{u0) = 1 if 

5 



u has been marked for refinement and w{uo) = 0 if u has been not marked for refinement. 
In addition, we assign w{ii[) = 0. Let pw{ui), i = 0,1, denote the prefix-type computation 
defined on this linked list, i.e. the summation of weights of nodes from the beginning of 
the list until and including the node U{. 

TABLE 1 

node Ui 6o 70    7i 5o 4o 3o 3i 4i 5i 8o 8i 6i 

w(ui) 0 0     0 0 0 1 0 0 0 0 0 0 

pw{ui) 1 1      1 1 1 1 0 0 0 0 0 0 

pw(uo) —pw{u\) 1 0 1 1 1 0 

Table 1 shows the initial weight assignments and the values of pw(ui). If pw(uo) - 
pw(ui) > 0, then we know that the node u has been either initially marked for refinement 
or it should be marked because of propagation of refinement. 

5    Discussion sind Conclusion 
In this paper, we have presented a logarithmic algorithm for adaptive mesh refinement 
by the longest edge bisection. The main advantage of the proposed algorithm is not its 
significantly lower worst case complexity, but rather its simplicity and its data parallel 
nature. The algorithm uses parallel prefix-type computation on linked list of mesh entities. 
Hence, it is a good candidate for implementation by a data parallel language like High 
Performance Fortran. The previous methods which have been proposed will be difficult to 
implement with a data parallel language. 

We have assumed our input to be in the form of faces pointing to edges and edges 
pointing to vertices. Whereas mesh generators such as the one described in [13] generate 
this type of input by default, there are also mesh generators that output meshes by giving 
a set of vertices and a set of faces with each face pointing to three vertices. One possible 
conversion procedure for this type input is this: We can identify edges with the indices of 
its two vertices which make it up. We can then have each face generate these two-tuples 
(vertex-vertex pair in ascending order) for each of its edges. These two tuples can then be 
sorted to get the face-to-edge relationship. 

In this paper, we have developed our algorithm for two-dimensional triangular meshes. 
One immediate question that pops up is this: Can we employ the same strategy for adaptive 
refinement of three-dimensional tetrahedral meshes ? Various methods have been proposed 
for tetrahedron refinement [3][9] including one based on longest edge bisection [12]. In two 
dimensions, an edge can be shared by at most two faces. In three dimensions, there can be 
arbitrary number of faces which can share an edge. This introduces some complications. 
These problems will be the target of future investigations. 
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